McLaren MP4-12C, 2011
The McLaren MP4-12C is revealed as the first in a range of high-performance sports cars from McLaren Automotive, the independent car division based at the McLaren Technology Centre in Woking, England. The 12C, and future models within the range, will challenge the world's best sports cars, benefiting from the expertise and virtuosity of the McLaren Group.
Twenty years of sports car design, engineering and production combined with inspirational success in Formula 1 have driven Ron Dennis, McLaren Automotive Chairman, to announce his plans for the ultimate line-up of technology-led and customer-focused performance cars for the 21st century. The rules in the sports car world are about to be re-written.
Through a rich modern history, McLaren's automotive division has already built the world's most critically acclaimed supercar, the McLaren F1 (1993-1998) and the world's best-selling luxury supercar, the Mercedes-Benz SLR McLaren (2003-2009). McLaren Automotive now looks to the future with a new range of revolutionary sports cars.
At its heart, the McLaren MP4-12C features a revolutionary carbon fibre chassis structure, the Carbon MonoCell: the first time a car in this market segment is based around such a strong and lightweight racing car engineering solution and the first time any car has ever featured a one-piece carbon fibre structure.
This step change in sports car design means that the 12C introduces new standards not just in handling, ride and outright performance, but also safety, economy and practicality in an already competitive sector.
Martin Whitmarsh, Team Principal of McLaren's racing team highlighted the integral part that McLaren's motorsport and road car experience played in developing the 12C: "McLaren has for years offered a potent mix of race car and road car technologies. This combination of McLaren's performance heritage, and future demands on what is expected of high performance sports cars in the 21st century, gave us a head-start when we embarked on this project. The 12C, and future variants, draws on the spirit of Formula 1 and delivers real-world technological advances."
Inside out
The heart of the new car is the Carbon MonoCell. McLaren pioneered the use of carbon composite construction in the 1981 Formula 1 MP4/1 model and set a trend that all Formula 1 teams have followed. The company brought carbon fibre to road cars for the first time with the 1993 McLaren F1 and then built on this experience with a carbon fibre chassis and body on the SLR manufactured to the same exacting standards, but in higher volumes.
The 12C changes this by introducing the advantages of carbon composite - light weight, high strength and torsional rigidity, and longevity - to a more affordable sector through its revolutionary engineering as a one-piece moulding. Never before has a carbon fibre chassis been produced this way.
The 12C MonoCell not only brings dynamic benefits, but also offers fundamental engineering opportunities that form the basis of the car's unique character. It has been designed to allow a much narrower structure overall which in turn contributes to a more compact car that is easier to position on the road and more rewarding to drive.
Not only is the 12C unique in its class by offering carbon technology, it also has the highest specific power output as well as extraordinary power- and torque-to-weight ratios. Furthermore, the Proactive Chassis Control system offers groundbreaking handling and ride comfort while an intense focus on occupant packaging offers new levels of comfort and everyday usability.
Antony Sheriff explained. "With the 12C we are redefining the relationship between performance and practicality, as well as performance and efficiency, achieving leading positions in both. We have designed this car from the inside out. We have a saying in McLaren - 'everything for a reason' and the 12C will surprise people in many ways.
Pure McLaren
All the parts of the McLaren MP4-12C are bespoke and unique to this car. Everything from the engine right down to the tailor-made switches and buttons is pure McLaren: nothing has come from another manufacturer's parts bin.
The 12C is powered by a bespoke McLaren 'M838T' 3.8 litre, V8 twin-turbo engine producing around 600bhp, driving through a McLaren seven speed Seamless Shift dual clutch gearbox (SSG). It is targeting not only new standards for power and performance in its sector, but also class-leading fuel economy and CO2 emissions; supported by McLaren's experience of active aerodynamics to aid cooling, grip, handling and road holding.
Thorough engineering and market research led to concept development and a clear decision in favour of a mid-engined two door high performance sports car. Intensive work was carried out in the wind tunnel and the driving simulator to ensure that the new car would inherently have superb dynamic qualities.
Adding lightness
Weight is the enemy of performance in every area of car design. It affects acceleration, speed, handling, fuel consumption and CO2 emissions - everything. McLaren Automotive engineers pursued weight saving obsessively.
Twenty years of sports car design, engineering and production combined with inspirational success in Formula 1 have driven Ron Dennis, McLaren Automotive Chairman, to announce his plans for the ultimate line-up of technology-led and customer-focused performance cars for the 21st century. The rules in the sports car world are about to be re-written.
Through a rich modern history, McLaren's automotive division has already built the world's most critically acclaimed supercar, the McLaren F1 (1993-1998) and the world's best-selling luxury supercar, the Mercedes-Benz SLR McLaren (2003-2009). McLaren Automotive now looks to the future with a new range of revolutionary sports cars.
At its heart, the McLaren MP4-12C features a revolutionary carbon fibre chassis structure, the Carbon MonoCell: the first time a car in this market segment is based around such a strong and lightweight racing car engineering solution and the first time any car has ever featured a one-piece carbon fibre structure.
This step change in sports car design means that the 12C introduces new standards not just in handling, ride and outright performance, but also safety, economy and practicality in an already competitive sector.
Martin Whitmarsh, Team Principal of McLaren's racing team highlighted the integral part that McLaren's motorsport and road car experience played in developing the 12C: "McLaren has for years offered a potent mix of race car and road car technologies. This combination of McLaren's performance heritage, and future demands on what is expected of high performance sports cars in the 21st century, gave us a head-start when we embarked on this project. The 12C, and future variants, draws on the spirit of Formula 1 and delivers real-world technological advances."
Inside out
The heart of the new car is the Carbon MonoCell. McLaren pioneered the use of carbon composite construction in the 1981 Formula 1 MP4/1 model and set a trend that all Formula 1 teams have followed. The company brought carbon fibre to road cars for the first time with the 1993 McLaren F1 and then built on this experience with a carbon fibre chassis and body on the SLR manufactured to the same exacting standards, but in higher volumes.
The 12C changes this by introducing the advantages of carbon composite - light weight, high strength and torsional rigidity, and longevity - to a more affordable sector through its revolutionary engineering as a one-piece moulding. Never before has a carbon fibre chassis been produced this way.
The 12C MonoCell not only brings dynamic benefits, but also offers fundamental engineering opportunities that form the basis of the car's unique character. It has been designed to allow a much narrower structure overall which in turn contributes to a more compact car that is easier to position on the road and more rewarding to drive.
Not only is the 12C unique in its class by offering carbon technology, it also has the highest specific power output as well as extraordinary power- and torque-to-weight ratios. Furthermore, the Proactive Chassis Control system offers groundbreaking handling and ride comfort while an intense focus on occupant packaging offers new levels of comfort and everyday usability.
Antony Sheriff explained. "With the 12C we are redefining the relationship between performance and practicality, as well as performance and efficiency, achieving leading positions in both. We have designed this car from the inside out. We have a saying in McLaren - 'everything for a reason' and the 12C will surprise people in many ways.
Pure McLaren
All the parts of the McLaren MP4-12C are bespoke and unique to this car. Everything from the engine right down to the tailor-made switches and buttons is pure McLaren: nothing has come from another manufacturer's parts bin.
The 12C is powered by a bespoke McLaren 'M838T' 3.8 litre, V8 twin-turbo engine producing around 600bhp, driving through a McLaren seven speed Seamless Shift dual clutch gearbox (SSG). It is targeting not only new standards for power and performance in its sector, but also class-leading fuel economy and CO2 emissions; supported by McLaren's experience of active aerodynamics to aid cooling, grip, handling and road holding.
Thorough engineering and market research led to concept development and a clear decision in favour of a mid-engined two door high performance sports car. Intensive work was carried out in the wind tunnel and the driving simulator to ensure that the new car would inherently have superb dynamic qualities.
Adding lightness
Weight is the enemy of performance in every area of car design. It affects acceleration, speed, handling, fuel consumption and CO2 emissions - everything. McLaren Automotive engineers pursued weight saving obsessively.
For example:
* The Carbon MonoCell not only reduces the weight of the structure but also allows for the use of much lighter weight body panels.
* The close position of the driver and passenger allows a narrower, lighter body while giving improved visibility with a clearer perception of the car's extremities.
* Brakes with forged aluminium hubs save 8 kg and weigh less than optional carbon ceramic brakes.
* Lightweight exhaust pipes exit straight out the rear of the car, minimizing their length and weight.
* Airflow-assisted Airbrake deployment dramatically reduces weight of the Airbrake activation system.
* Small, compact downsized engine coupled to lightweight compact SSG minimizes vehicle length, weight and polar moment of inertia.
* Significant weight was pared off the alloy wheels through intensive Finite Element Analysis of wall thicknesses.
* The engine cooling radiators were mounted at the rear, as close to the engine as possible, to minimize the pipework, the fluids contained within them, and therefore weight. They were also mounted in car line to minimize vehicle width.
Design: everything for a reason
The McLaren MP4-12C design follows similar principles to McLaren's Formula 1 cars, and the legendary McLaren F1, where everything is for a reason and all lines, surfaces, and details are designed with a job in mind as much as styled. This ensures that the 12C communicates its engineering through its styling and will remain timeless as a piece of automotive design.
Frank Stephenson, McLaren Automotive Design Director: "Many sports cars and super cars present an 'in-your-face', 'look-at-me' image that can become wearing and boorish; the ultimate backhanded compliment becomes, "…it was of its time". Great design, however, is timeless and looks relevant years later. Take the McLaren F1 as an example. I hope that with the 12C we have produced a car that looks great today and will still look great in years to come."
The 12C's body has been styled to support sector-leading levels of downforce; downforce that then subsequently contributes to sector-leading levels of lateral grip and stability. Air flow has been manically managed to support all performance figures and light weight targets. For example, placing the radiators adjacent to the engine keeps the car narrow and reduces weight. However, this results in a huge challenge of ensuring ample air flow to the radiators. The result? The large side air scoops and integrated turning vanes that are dramatic, but purely functional. No larger or smaller than required.
The designer's challenge is to then take that styling purpose driven by engineering aspirations and add personality. That's why the air scoops resemble the McLaren logo in form, as do other features around the car.
Just two 'pure' lines flow round the car and, when combined with the integration of several dramatic convex and concave surfaces, present a car that looks compact, low and well proportioned.
The market opportunity for McLaren
The market for high performance sports cars has grown substantially since the turn of the century. McLaren divides the market into segments that encompass both more comfort-orientated GT cars and the hard-edged supercars for road and track use.
The 'core' segment runs from around £125,000 to £175,000 featuring such cars as the Ferrari 458, Lamborghini Gallardo, Porsche 911 Turbo, Bentley Continental GT and Aston Martin DB9. A second segment is the 'high' category with prices ranging from £175,000 to £250,000 and consists largely of front-engined GT cars such as Ferrari 599 GTB and Ferrari 612, with just one mid-engined contender, the Lamborghini Murcielago.
The final segment is the 'ultimate' group, a sector more or less initiated by the McLaren F1 in 1993 and now populated by a select group of cars including the Mercedes-Benz SLR McLaren, Bugatti Veyron, and cars from the likes of Pagani and Koenigsegg that followed legends such as the Porsche Carrera GT and Ferrari Enzo. In 2011, McLaren will bring technology and performance exclusive to this 'ultimate' sector into the 'core' segment.
Though the recent economic downturn has affected the performance car sector, just as it has the entire motor industry, McLaren Automotive believes that the 'core' segment's growth from 8,000 sales in 2000 to more than 28,000 in 2007 highlights the potential that exists and that it will soon return to at least 2007 levels.
McLaren Automotive will distribute the 12C and future models through a brand-new retail network in all global markets.
Exclusivity, exquisite design and a passionate focus on delivering a wonderful ownership experience will ensure that the small number of retailers around the world are taking on an attractive new brand. This approach will drive excellent customer service and a virtuous circle that retains McLaren customers and brings in new converts as the range expands.
McLaren MP4-12C - what's in a name?
The name of the new McLaren sports car is MP4-12C.
What does this signify? As one might expect at McLaren, everything has a purpose and the nomenclature is no exception.
* 'MP4' has been the chassis designation for all McLaren Formula 1 cars since 1981. It stands for McLaren Project 4, resulting from the merger of Ron Dennis' Project 4 organisation with McLaren.
* The '12' refers to McLaren's internal Vehicle Performance Index through which it rates key performance criteria both for competitors and for its own cars. The criteria combine power, weight, emissions, and aerodynamic efficiency. The coalition of all these values delivers an overall performance index that has been used as a benchmark throughout the car's development.
* The 'C' refers to Carbon, highlighting the unique application of carbon fibre technology to the future range of McLaren sports cars.
The elements of this name represent everything that the McLaren MP4-12C stands for:
* 'MP4' represents the racing bloodline
* '12' represents the focus on complete performance and efficiency
* 'C' represents the revolutionary Carbon MonoCell
A carbon fibre heart
Light weight and performance are defining philosophies at McLaren. But outright power alone is of little significance if a car's weight saps output or if that power is unmanageable and compromises the driving experience or results in unacceptable emissions.
Fundamentally, it is critical to keep weight as low as possible. Increased customer demands for safety and advanced features all mean that shaving weight is ever more difficult. However, at McLaren saving weight remains a passion and at the heart of the McLaren MP4-12C is a carbon fibre composite chassis: the Carbon MonoCell.
This revolutionary structure is the automotive version of a McLaren innovation that started with Formula 1 back in 1981 and delivers both weight savings and performance gains. It is a technology cascade in which McLaren brought carbon composite technology from the aerospace industry to make the MP4/1 F1 car, the first Formula 1 car to benefit from the strength, weight and safety of carbon fibre.
McLaren's Formula 1 carbon fibre technology then offered the company the opportunity of applying its expertise to road car applications. The first ever road car to be constructed of this material was the McLaren F1 produced in 1993, albeit in small numbers. The F1 was followed by the Mercedes-Benz SLR McLaren that also shared this rare expertise.
Only a handful of other cars in the market offer such technology today and all of them lie in the 'ultimate' segment. No manufacturer has brought the advantages of carbon composite technology to a more affordable sector of the market. But the 12C does, through engineering passion and a relentless pursuit of efficiency.
So, McLaren did it first with the F1, the world's fastest car for many years, then in the highest volume with SLR, which almost doubled the volume of the next highest produced carbon fibre-based high performance sports car by selling over 2,100 units. Now, through revolutionary one-piece moulding of the MonoCell, McLaren brings a carbon composite chassis down to the 'core' category, where currently only traditional metal structures are offered.
The advantages this technology brings are light weight, high torsional rigidity, a very strong safety cell, low perishability, ease of repair and extreme dimensional accuracy.
The 12C MonoCell weighs less than 80 kg. Carbon fibre contributes to the car's low overall weight and it forms the structural basis for the whole car. The tub's torsional rigidity is considerably stiffer than a comparable alloy structure.
This inherent lack of flex means the unique front suspension system, which is mounted directly onto the MonoCell, requires less compromise for flex of the suspension itself. Therefore, it is easier to develop the unique balance between fine ride and precise handling that McLaren has targeted. The MonoCell also offers greater occupant safety. It acts as a safety survival cell, as it does for a Formula 1 car.
Carbon composites do not degrade over time like metal structures that fatigue. One is able to get into a 15-year-old McLaren F1 and there is none of the tiredness or lack of structural integrity that afflicts traditional cars that have suffered a hard life. The 12C will feel as good as new in this respect for decades.
And in the event of an accident, the light weight aluminium alloy front and rear structures are designed to absorb impact forces in a crash and can be replaced relatively easily. Aluminium extrusions and castings are jig welded into the finished assembly and bolted directly to the MonoCell. Cars with full aluminium chassis use their structure to absorb and crumple on impact, which implies more fundamental damage (and expense) to the whole structure, including the passenger cell, in a major accident.
McLaren has pioneered a new carbon fibre production process that allows the MonoCell to be produced to exacting quality standards, in a single piece, in only four hours, compared to the dozens of carbon components (and dozens of production hours) that normally feature in a carbon fibre chassis structure. This naturally brings huge efficiency and quality benefits. The MonoCell project is managed by Claudio Santoni, McLaren Automotive Body Structures Function Manager.
Powertrain: pure McLaren
The McLaren MP4-12C is powered by a twin-turbocharged, 3.8 litre 90° V8 engine - the 'M838T'. This marks the start of a new era in 'core' segment sports cars - smaller capacity, lighter weight, higher efficiency and more economical power units. The engine has the highest specific power output in its segment which, when allied to its low weight carbon composite chassis, delivers exemplary power- and torque-to-weight ratios.
'M838T' is a unique McLaren power unit, developed specifically for the 12C. It is compact, lightweight, very stiff, and offers an uncompromising combination of very high performance and good driveability, with excellent economy and CO2 emission values.
Taking power and emissions in combination (measured by its horsepower to CO2 ratio), the 12C delivers its power at greater efficiency than any other car on the market with an internal combustion engine, including hybrids.
'M838T' features dual variable valve timing and produces around 600bhp and 600Nm of torque. A dry sump and flat plane crankshaft allow the engine to be placed extremely low in the chassis thereby lowering the centre of gravity and improving handling responses. It also features composite cam covers and intake manifolds, which reduce weight and heat transmission into the charge air, as well as Nikasil-coated aluminium liners for further weight reduction.
The McLaren engine revs to 8,500rpm, has quick transient throttle response and delivers its abundant torque throughout the rev range. A staggering 80 per cent of torque is available at below 2,000rpm, ensuring great driveability and no need to floor the throttle to deliver performance.
And it delivers a great soundtrack to highlight the engine's performance, flexibility and driveability. The sound of the engine has been thoroughly engineered through exhaust manifold design and tuning of the exhaust and intake systems to deliver a unique engine note.
The high level exhaust pipes exit through a mixing box, rather than a conventional and heavy silencer box. All parts of the exhaust system up to the mixing box feature sandwich layer heat-shielding that helps reduce heat from the engine bay. In just an 18mm gap, exhaust gas temperatures reduce from 900°C to 300°C.
The engine drives the rear wheels through two wet clutches and a McLaren-developed seven speed Seamless Shift dual clutch gearbox (SSG).
The Seamless Shift technology offers variable programmes ranging from 'normal' for road use and 'sport' for quicker changes still, right up to a lightning quick high performance mode. In addition an 'automatic' mode, 'launch control' and 'winter' modes can be selected, the latter changing all electronic functions to suit low friction conditions and delivering maximum driver aid and support. There is no traditional manual transmission offered; the two pedal layout offered further scope to create a narrow, and therefore light, car.
The 12C's SSG is a development on the automated and sequential manual gearboxes with paddle shifts that proliferate in the car market today. The character of the transmission will engage even experienced drivers with its responsiveness and its contribution to the whole dynamic package.
With minimal torque loss, there is none of the lurch, hesitation or unpredictability that characterise traditional automated-manual transmission systems.
Design of the SSG system was driven by a demanding mechanical package that not only reduced weight and improved dynamic control for the entire vehicle, but also delivered driver benefits.
It is lightweight and compact in design and positioned in exactly the best location. The input shaft lies very close to the output shaft to help position the entire powertrain low in the vehicle. Twin secondary shafts ensure any rear axle weight overhang is minimised and rear crash performance is uncompromised. The bespoke SSG is further complemented by an entirely new control system.
This obsessive attention to detail comes as second nature to McLaren, but is not just there to satisfy the engineers' passions. McLaren's designers have also engineered the system to work seamlessly with the driver.
The system reduces weight and benefits packaging targets, but also ensures that driving programmes and shift strategies take the driver's own inputs and uses them to directly control the engine's torque and speed to deliver performance, economy or comfort as requested.
Gears are changed using a Formula 1 style rocker shift that pivots in the centre of the steering wheel. It is actuated on either side of the steering wheel (pulling right changes up, pulling left down).
As with the McLaren Formula 1 car, a shift can be actuated either by pulling or by pushing on the rocker. The rocker moves with the steering wheel, rather than being mounted on the steering column, so that if a gearchange is needed while lock is being applied the driver does not have to fumble around to change gear.
The rocker itself incorporates an innovative feature created by McLaren engineers called Pre-Cog. The name stands for pre-cognition, literally 'foreknowledge'. The rocker on the 12C has two positions with a slightly different haptic (or feel) for each. The driver applies first pressure to the rocker and it informs the gearbox to get ready to swap ratios, thereby saving time - latency - between the message being sent and the gearbox being primed to act. The second pressure confirms that the gear should be changed and the torque handover is completed in milliseconds.
Chassis: Proactive control
The suspension for the McLaren MP4-12C breaks new ground, offering hitherto unseen levels of roll control and grip (an almost flat cornering attitude, depending on the programme selected).
Though such track-like responses would normally imply a rock-hard ride, the 12C delivers compliance and ride comfort more akin to an executive saloon car. The mix of occupant cosseting and sporting potential is truly unique. The 12C offers the driver both class-leading ride comfort and class-leading performance.
The whole chassis package produces not only a unique relationship between ride and handling, but also astonishing lateral grip and outstanding traction. The 12C is poised and balanced whether negotiating high or low speed corners, during direction changes, under heavy or light braking and on tightening or opening corners.
The trick behind blending such opposing objectives lies in the innovative Proactive Chassis Control system, uncompromised geometry, and weight distribution.
The suspension is based on double wishbones with coil springs. The dampers are interconnected hydraulically and provide adaptive responses depending on both road conditions and driver preference.
The Proactive system features adjustable roll control which replaces the mechanical anti-roll bars that have been a standard feature of road cars since time immemorial. It allows the car to maintain precise roll control under heavy cornering while decoupling the suspension in a straight line for excellent wheel articulation and compliance.
There are three suspension modes that are selected on the Active Dynamics Panel. As with the powertrain adjustment, there is a 'normal', a 'sport' mode and a high performance mode which adjusts numerous parameters in the system.
The powertrain packaging also contributes to the 12C's handling prowess.
The engine is mounted low down in order to lower the centre of gravity while the radiators are rear-mounted and reduce weight by saving on long piping to and from the engine (and the fluids they would hold). The value of rear-mounted radiators is key to the 12C's handling and balance. The more weight that can be concentrated within the wheelbase and towards the centre of gravity, the lower the polar moment of inertia, thereby improving corner turn in.
Another feature that helps the 12C to handle at a new level is a development of an electronic system used by McLaren's 1997 MP4/12 Formula 1 car, - Brake Steer. In essence, it is a system that brakes the inside rear wheel when the car is entering a corner too quickly to make the desired radius. Under normal circumstances the front would wash away wide of the apex the driver wants to touch: in other words, the car is in a state of understeer.
Brake Steer manages the tendency of a car to wash out and brings its nose back on line. It assesses the steering angle to determine the driver's intended course and applies the inside rear brake to increase yaw rate and resume the desired course.
The system works on acceleration out of a corner when the inside rear has a tendency to spin, allowing the driver to put power down more quickly. It controls what a limited slip differential would do and obviates the need for such a complex and heavy unit, thus saving more valuable kilos.
The standard brakes for the 12C reduce overall vehicle and unsprung mass. McLaren has developed a composite braking system that uses a forged aluminium bell that attaches to the cast iron disc. This solution maintained the excellent brake feel of a cast iron disc while saving 8 kg. Carbon ceramic brakes will be available as an option, offering fade-free braking performance during high performance driving, but the standard composite brake system is actually lighter than the larger carbon ceramic units.
The design of the standard cast alloy wheels (19" front, 20" rear) was driven by McLaren's light weight objectives: the light weight styling was agreed in concept, then the wheel was tuned using Finite Element Analysis to take a further 4 kg out of the wheels. Bespoke Pirelli tyres have been developed in conjunction with McLaren specifically for the 12C.
An array of electronic aids is fitted to the 12C that will assist and protect the less-experienced driver, or when conditions challenge even the best. These include ABS, ESP, ASR traction control, Electronic Brake Distribution, Hill Hold and Brake Steer. The level of intervention varies according to the handling mode selected.
* The Carbon MonoCell not only reduces the weight of the structure but also allows for the use of much lighter weight body panels.
* The close position of the driver and passenger allows a narrower, lighter body while giving improved visibility with a clearer perception of the car's extremities.
* Brakes with forged aluminium hubs save 8 kg and weigh less than optional carbon ceramic brakes.
* Lightweight exhaust pipes exit straight out the rear of the car, minimizing their length and weight.
* Airflow-assisted Airbrake deployment dramatically reduces weight of the Airbrake activation system.
* Small, compact downsized engine coupled to lightweight compact SSG minimizes vehicle length, weight and polar moment of inertia.
* Significant weight was pared off the alloy wheels through intensive Finite Element Analysis of wall thicknesses.
* The engine cooling radiators were mounted at the rear, as close to the engine as possible, to minimize the pipework, the fluids contained within them, and therefore weight. They were also mounted in car line to minimize vehicle width.
Design: everything for a reason
The McLaren MP4-12C design follows similar principles to McLaren's Formula 1 cars, and the legendary McLaren F1, where everything is for a reason and all lines, surfaces, and details are designed with a job in mind as much as styled. This ensures that the 12C communicates its engineering through its styling and will remain timeless as a piece of automotive design.
Frank Stephenson, McLaren Automotive Design Director: "Many sports cars and super cars present an 'in-your-face', 'look-at-me' image that can become wearing and boorish; the ultimate backhanded compliment becomes, "…it was of its time". Great design, however, is timeless and looks relevant years later. Take the McLaren F1 as an example. I hope that with the 12C we have produced a car that looks great today and will still look great in years to come."
The 12C's body has been styled to support sector-leading levels of downforce; downforce that then subsequently contributes to sector-leading levels of lateral grip and stability. Air flow has been manically managed to support all performance figures and light weight targets. For example, placing the radiators adjacent to the engine keeps the car narrow and reduces weight. However, this results in a huge challenge of ensuring ample air flow to the radiators. The result? The large side air scoops and integrated turning vanes that are dramatic, but purely functional. No larger or smaller than required.
The designer's challenge is to then take that styling purpose driven by engineering aspirations and add personality. That's why the air scoops resemble the McLaren logo in form, as do other features around the car.
Just two 'pure' lines flow round the car and, when combined with the integration of several dramatic convex and concave surfaces, present a car that looks compact, low and well proportioned.
The market opportunity for McLaren
The market for high performance sports cars has grown substantially since the turn of the century. McLaren divides the market into segments that encompass both more comfort-orientated GT cars and the hard-edged supercars for road and track use.
The 'core' segment runs from around £125,000 to £175,000 featuring such cars as the Ferrari 458, Lamborghini Gallardo, Porsche 911 Turbo, Bentley Continental GT and Aston Martin DB9. A second segment is the 'high' category with prices ranging from £175,000 to £250,000 and consists largely of front-engined GT cars such as Ferrari 599 GTB and Ferrari 612, with just one mid-engined contender, the Lamborghini Murcielago.
The final segment is the 'ultimate' group, a sector more or less initiated by the McLaren F1 in 1993 and now populated by a select group of cars including the Mercedes-Benz SLR McLaren, Bugatti Veyron, and cars from the likes of Pagani and Koenigsegg that followed legends such as the Porsche Carrera GT and Ferrari Enzo. In 2011, McLaren will bring technology and performance exclusive to this 'ultimate' sector into the 'core' segment.
Though the recent economic downturn has affected the performance car sector, just as it has the entire motor industry, McLaren Automotive believes that the 'core' segment's growth from 8,000 sales in 2000 to more than 28,000 in 2007 highlights the potential that exists and that it will soon return to at least 2007 levels.
McLaren Automotive will distribute the 12C and future models through a brand-new retail network in all global markets.
Exclusivity, exquisite design and a passionate focus on delivering a wonderful ownership experience will ensure that the small number of retailers around the world are taking on an attractive new brand. This approach will drive excellent customer service and a virtuous circle that retains McLaren customers and brings in new converts as the range expands.
McLaren MP4-12C - what's in a name?
The name of the new McLaren sports car is MP4-12C.
What does this signify? As one might expect at McLaren, everything has a purpose and the nomenclature is no exception.
* 'MP4' has been the chassis designation for all McLaren Formula 1 cars since 1981. It stands for McLaren Project 4, resulting from the merger of Ron Dennis' Project 4 organisation with McLaren.
* The '12' refers to McLaren's internal Vehicle Performance Index through which it rates key performance criteria both for competitors and for its own cars. The criteria combine power, weight, emissions, and aerodynamic efficiency. The coalition of all these values delivers an overall performance index that has been used as a benchmark throughout the car's development.
* The 'C' refers to Carbon, highlighting the unique application of carbon fibre technology to the future range of McLaren sports cars.
The elements of this name represent everything that the McLaren MP4-12C stands for:
* 'MP4' represents the racing bloodline
* '12' represents the focus on complete performance and efficiency
* 'C' represents the revolutionary Carbon MonoCell
A carbon fibre heart
Light weight and performance are defining philosophies at McLaren. But outright power alone is of little significance if a car's weight saps output or if that power is unmanageable and compromises the driving experience or results in unacceptable emissions.
Fundamentally, it is critical to keep weight as low as possible. Increased customer demands for safety and advanced features all mean that shaving weight is ever more difficult. However, at McLaren saving weight remains a passion and at the heart of the McLaren MP4-12C is a carbon fibre composite chassis: the Carbon MonoCell.
This revolutionary structure is the automotive version of a McLaren innovation that started with Formula 1 back in 1981 and delivers both weight savings and performance gains. It is a technology cascade in which McLaren brought carbon composite technology from the aerospace industry to make the MP4/1 F1 car, the first Formula 1 car to benefit from the strength, weight and safety of carbon fibre.
McLaren's Formula 1 carbon fibre technology then offered the company the opportunity of applying its expertise to road car applications. The first ever road car to be constructed of this material was the McLaren F1 produced in 1993, albeit in small numbers. The F1 was followed by the Mercedes-Benz SLR McLaren that also shared this rare expertise.
Only a handful of other cars in the market offer such technology today and all of them lie in the 'ultimate' segment. No manufacturer has brought the advantages of carbon composite technology to a more affordable sector of the market. But the 12C does, through engineering passion and a relentless pursuit of efficiency.
So, McLaren did it first with the F1, the world's fastest car for many years, then in the highest volume with SLR, which almost doubled the volume of the next highest produced carbon fibre-based high performance sports car by selling over 2,100 units. Now, through revolutionary one-piece moulding of the MonoCell, McLaren brings a carbon composite chassis down to the 'core' category, where currently only traditional metal structures are offered.
The advantages this technology brings are light weight, high torsional rigidity, a very strong safety cell, low perishability, ease of repair and extreme dimensional accuracy.
The 12C MonoCell weighs less than 80 kg. Carbon fibre contributes to the car's low overall weight and it forms the structural basis for the whole car. The tub's torsional rigidity is considerably stiffer than a comparable alloy structure.
This inherent lack of flex means the unique front suspension system, which is mounted directly onto the MonoCell, requires less compromise for flex of the suspension itself. Therefore, it is easier to develop the unique balance between fine ride and precise handling that McLaren has targeted. The MonoCell also offers greater occupant safety. It acts as a safety survival cell, as it does for a Formula 1 car.
Carbon composites do not degrade over time like metal structures that fatigue. One is able to get into a 15-year-old McLaren F1 and there is none of the tiredness or lack of structural integrity that afflicts traditional cars that have suffered a hard life. The 12C will feel as good as new in this respect for decades.
And in the event of an accident, the light weight aluminium alloy front and rear structures are designed to absorb impact forces in a crash and can be replaced relatively easily. Aluminium extrusions and castings are jig welded into the finished assembly and bolted directly to the MonoCell. Cars with full aluminium chassis use their structure to absorb and crumple on impact, which implies more fundamental damage (and expense) to the whole structure, including the passenger cell, in a major accident.
McLaren has pioneered a new carbon fibre production process that allows the MonoCell to be produced to exacting quality standards, in a single piece, in only four hours, compared to the dozens of carbon components (and dozens of production hours) that normally feature in a carbon fibre chassis structure. This naturally brings huge efficiency and quality benefits. The MonoCell project is managed by Claudio Santoni, McLaren Automotive Body Structures Function Manager.
Powertrain: pure McLaren
The McLaren MP4-12C is powered by a twin-turbocharged, 3.8 litre 90° V8 engine - the 'M838T'. This marks the start of a new era in 'core' segment sports cars - smaller capacity, lighter weight, higher efficiency and more economical power units. The engine has the highest specific power output in its segment which, when allied to its low weight carbon composite chassis, delivers exemplary power- and torque-to-weight ratios.
'M838T' is a unique McLaren power unit, developed specifically for the 12C. It is compact, lightweight, very stiff, and offers an uncompromising combination of very high performance and good driveability, with excellent economy and CO2 emission values.
Taking power and emissions in combination (measured by its horsepower to CO2 ratio), the 12C delivers its power at greater efficiency than any other car on the market with an internal combustion engine, including hybrids.
'M838T' features dual variable valve timing and produces around 600bhp and 600Nm of torque. A dry sump and flat plane crankshaft allow the engine to be placed extremely low in the chassis thereby lowering the centre of gravity and improving handling responses. It also features composite cam covers and intake manifolds, which reduce weight and heat transmission into the charge air, as well as Nikasil-coated aluminium liners for further weight reduction.
The McLaren engine revs to 8,500rpm, has quick transient throttle response and delivers its abundant torque throughout the rev range. A staggering 80 per cent of torque is available at below 2,000rpm, ensuring great driveability and no need to floor the throttle to deliver performance.
And it delivers a great soundtrack to highlight the engine's performance, flexibility and driveability. The sound of the engine has been thoroughly engineered through exhaust manifold design and tuning of the exhaust and intake systems to deliver a unique engine note.
The high level exhaust pipes exit through a mixing box, rather than a conventional and heavy silencer box. All parts of the exhaust system up to the mixing box feature sandwich layer heat-shielding that helps reduce heat from the engine bay. In just an 18mm gap, exhaust gas temperatures reduce from 900°C to 300°C.
The engine drives the rear wheels through two wet clutches and a McLaren-developed seven speed Seamless Shift dual clutch gearbox (SSG).
The Seamless Shift technology offers variable programmes ranging from 'normal' for road use and 'sport' for quicker changes still, right up to a lightning quick high performance mode. In addition an 'automatic' mode, 'launch control' and 'winter' modes can be selected, the latter changing all electronic functions to suit low friction conditions and delivering maximum driver aid and support. There is no traditional manual transmission offered; the two pedal layout offered further scope to create a narrow, and therefore light, car.
The 12C's SSG is a development on the automated and sequential manual gearboxes with paddle shifts that proliferate in the car market today. The character of the transmission will engage even experienced drivers with its responsiveness and its contribution to the whole dynamic package.
With minimal torque loss, there is none of the lurch, hesitation or unpredictability that characterise traditional automated-manual transmission systems.
Design of the SSG system was driven by a demanding mechanical package that not only reduced weight and improved dynamic control for the entire vehicle, but also delivered driver benefits.
It is lightweight and compact in design and positioned in exactly the best location. The input shaft lies very close to the output shaft to help position the entire powertrain low in the vehicle. Twin secondary shafts ensure any rear axle weight overhang is minimised and rear crash performance is uncompromised. The bespoke SSG is further complemented by an entirely new control system.
This obsessive attention to detail comes as second nature to McLaren, but is not just there to satisfy the engineers' passions. McLaren's designers have also engineered the system to work seamlessly with the driver.
The system reduces weight and benefits packaging targets, but also ensures that driving programmes and shift strategies take the driver's own inputs and uses them to directly control the engine's torque and speed to deliver performance, economy or comfort as requested.
Gears are changed using a Formula 1 style rocker shift that pivots in the centre of the steering wheel. It is actuated on either side of the steering wheel (pulling right changes up, pulling left down).
As with the McLaren Formula 1 car, a shift can be actuated either by pulling or by pushing on the rocker. The rocker moves with the steering wheel, rather than being mounted on the steering column, so that if a gearchange is needed while lock is being applied the driver does not have to fumble around to change gear.
The rocker itself incorporates an innovative feature created by McLaren engineers called Pre-Cog. The name stands for pre-cognition, literally 'foreknowledge'. The rocker on the 12C has two positions with a slightly different haptic (or feel) for each. The driver applies first pressure to the rocker and it informs the gearbox to get ready to swap ratios, thereby saving time - latency - between the message being sent and the gearbox being primed to act. The second pressure confirms that the gear should be changed and the torque handover is completed in milliseconds.
Chassis: Proactive control
The suspension for the McLaren MP4-12C breaks new ground, offering hitherto unseen levels of roll control and grip (an almost flat cornering attitude, depending on the programme selected).
Though such track-like responses would normally imply a rock-hard ride, the 12C delivers compliance and ride comfort more akin to an executive saloon car. The mix of occupant cosseting and sporting potential is truly unique. The 12C offers the driver both class-leading ride comfort and class-leading performance.
The whole chassis package produces not only a unique relationship between ride and handling, but also astonishing lateral grip and outstanding traction. The 12C is poised and balanced whether negotiating high or low speed corners, during direction changes, under heavy or light braking and on tightening or opening corners.
The trick behind blending such opposing objectives lies in the innovative Proactive Chassis Control system, uncompromised geometry, and weight distribution.
The suspension is based on double wishbones with coil springs. The dampers are interconnected hydraulically and provide adaptive responses depending on both road conditions and driver preference.
The Proactive system features adjustable roll control which replaces the mechanical anti-roll bars that have been a standard feature of road cars since time immemorial. It allows the car to maintain precise roll control under heavy cornering while decoupling the suspension in a straight line for excellent wheel articulation and compliance.
There are three suspension modes that are selected on the Active Dynamics Panel. As with the powertrain adjustment, there is a 'normal', a 'sport' mode and a high performance mode which adjusts numerous parameters in the system.
The powertrain packaging also contributes to the 12C's handling prowess.
The engine is mounted low down in order to lower the centre of gravity while the radiators are rear-mounted and reduce weight by saving on long piping to and from the engine (and the fluids they would hold). The value of rear-mounted radiators is key to the 12C's handling and balance. The more weight that can be concentrated within the wheelbase and towards the centre of gravity, the lower the polar moment of inertia, thereby improving corner turn in.
Another feature that helps the 12C to handle at a new level is a development of an electronic system used by McLaren's 1997 MP4/12 Formula 1 car, - Brake Steer. In essence, it is a system that brakes the inside rear wheel when the car is entering a corner too quickly to make the desired radius. Under normal circumstances the front would wash away wide of the apex the driver wants to touch: in other words, the car is in a state of understeer.
Brake Steer manages the tendency of a car to wash out and brings its nose back on line. It assesses the steering angle to determine the driver's intended course and applies the inside rear brake to increase yaw rate and resume the desired course.
The system works on acceleration out of a corner when the inside rear has a tendency to spin, allowing the driver to put power down more quickly. It controls what a limited slip differential would do and obviates the need for such a complex and heavy unit, thus saving more valuable kilos.
The standard brakes for the 12C reduce overall vehicle and unsprung mass. McLaren has developed a composite braking system that uses a forged aluminium bell that attaches to the cast iron disc. This solution maintained the excellent brake feel of a cast iron disc while saving 8 kg. Carbon ceramic brakes will be available as an option, offering fade-free braking performance during high performance driving, but the standard composite brake system is actually lighter than the larger carbon ceramic units.
The design of the standard cast alloy wheels (19" front, 20" rear) was driven by McLaren's light weight objectives: the light weight styling was agreed in concept, then the wheel was tuned using Finite Element Analysis to take a further 4 kg out of the wheels. Bespoke Pirelli tyres have been developed in conjunction with McLaren specifically for the 12C.
An array of electronic aids is fitted to the 12C that will assist and protect the less-experienced driver, or when conditions challenge even the best. These include ABS, ESP, ASR traction control, Electronic Brake Distribution, Hill Hold and Brake Steer. The level of intervention varies according to the handling mode selected.
No comments:
Post a Comment